M-FDBSCAN: A multicore density-based uncertain data clustering algorithm
نویسندگان
چکیده
منابع مشابه
Density-Based Clustering Based on Probability Distribution for Uncertain Data
Today we have seen so much digital uncertain data produced. Handling of this uncertain data is very difficult. Commonly, the distance between these uncertain object descriptions are expressed by one numerical distance value. Clustering on uncertain data is one of the essential and challenging tasks in mining uncertain data. The previous methods extend partitioning clustering methods like k-mean...
متن کاملA Sketch-based Clustering Algorithm for Uncertain Data Streams
Due to the inaccuracy and noisy, uncertainty is inherent in time series streams, and increases the complexity of streams clustering. For the continuous arriving and massive data size, efficient data storage is a crucial task for clustering uncertain data streams. With hash-compressed structure, an extended uncertain sketch and update strategy are proposed to store uncertain data streams. And ba...
متن کاملDensity Based Distribute Data Stream Clustering Algorithm
To solve the problem of distributed data streams clustering, the algorithm DB-DDSC (Density-Based Distribute Data Stream Clustering) was proposed. The algorithm consisted of two stages. First presented the concept of circular-point based on the representative points and designed the iterative algorithm to find the densityconnected circular-points, then generated the local model at the remote si...
متن کاملNovel Density-Based Clustering Algorithms for Uncertain Data
Density-based techniques seem promising for handling data uncertainty in uncertain data clustering. Nevertheless, some issues have not been addressed well in existing algorithms. In this paper, we firstly propose a novel density-based uncertain data clustering algorithm, which improves upon existing algorithms from the following two aspects: (1) it employs an exact method to compute the probabi...
متن کاملAdjustable Probability Density Grid-Based Clustering for Uncertain Data Streams
Most existing traditional grid-based clustering algorithms for uncertain data streams that used the fixed meshing method have the disadvantage of low clustering accuracy. In view of above deficiencies, this paper proposes a novel algorithm APDG-CUStream, Adjustable Probability Density Grid-based Clustering for Uncertain Data Streams, which adopts the online component and offline component. In o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES
سال: 2014
ISSN: 1300-0632,1303-6203
DOI: 10.3906/elk-1202-83